Our Large Language Model as a Service (LLMaaS) offering gives you access to cutting-edge language models, inferred using SecNumCloud-qualified infrastructure, HDS-certified for healthcare data hosting, and therefore sovereign, calculated in France. Benefit from high performance and optimal security for your AI applications. Your data remains strictly confidential, and is neither exploited nor stored after processing.
Large models
Our large models offer state-of-the-art performance for the most demanding tasks. They are particularly well-suited to applications requiring a deep understanding of language, complex reasoning or the processing of long documents.
gpt-oss:120b
llama3.3:70b
gemma3:27b
qwen3-coder:30b
qwen3-2507:30b-a3b
qwen3-next:80b
qwen3-vl:30b
qwen3-vl:32b
Elm 3:7b
elm tree 3:32b
qwen3-2507:235b
Specialised models
Our specialised models are optimised for specific tasks such as code generation, image analysis or structured data processing. They offer an excellent performance/cost ratio for targeted use cases.
embeddinggemma:300m
gpt-oss:20b
qwen3-2507-think:4b
qwen3-2507:4b
rnj-1:8b
qwen3-vl:2b
qwen3-vl:4b
devstral:24b
devstral-small-2:24b
granite4-small-h:32b
granite4-tiny-h:7b
deepseek-ocr
medgemma:27b
mistral-small3.2:24b
granite3.2-vision:2b
magistral:24b
cogito:32b
granite-embedding:278m
qwen3-embedding:0.6b
qwen3-embedding:4b
qwen3-embedding:8b
granite3-guardian:2b
granite3-guardian:8b
functiongemma:270m
ministral-3:3b
ministral-3:8b
ministral-3:14b
Model comparison
This comparison table will help you choose the model best suited to your needs, based on various criteria such as context size, performance and specific use cases.
| Model | Publisher | Parameters | Context (k tokens) | Vision | Agent | Reasoning | Security | Quick * | Energy efficiency * |
|---|---|---|---|---|---|---|---|---|---|
| Large models | |||||||||
| gpt-oss:120b | OpenAI | 120B | 120000 | ||||||
| llama3.3:70b | Meta | 70B | 132000 | ||||||
| gemma3:27b | 27B | 120000 | |||||||
| qwen3-coder:30b | Qwen Team | 30B | 250000 | ||||||
| qwen3-2507:30b-a3b | Qwen Team | 30B | 250000 | ||||||
| qwen3-next:80b | Qwen Team | 80B | 262144 | ||||||
| qwen3-vl:30b | Qwen Team | 30B | 250000 | ||||||
| qwen3-vl:32b | Qwen Team | 32B | 250000 | ||||||
| Elm 3:7b | AllenAI | 7B | 65536 | ||||||
| elm tree 3:32b | AllenAI | 32B | 65536 | ||||||
| qwen3-2507:235b | Qwen Team | 235B (22B active) | 130000 | ||||||
| Specialised models | |||||||||
| embeddinggemma:300m | 300M | 2048 | N.C. | ||||||
| gpt-oss:20b | OpenAI | 20B | 120000 | ||||||
| qwen3-2507-think:4b | Qwen Team | 4B | 250000 | ||||||
| qwen3-2507:4b | Qwen Team | 4B | 250000 | ||||||
| rnj-1:8b | Essential AI | 8B | 32000 | N.C. | |||||
| qwen3-vl:2b | Qwen Team | 2B | 250000 | ||||||
| qwen3-vl:4b | Qwen Team | 4B | 250000 | ||||||
| devstral:24b | Mistral AI & All Hands AI | 24B | 120000 | ||||||
| devstral-small-2:24b | Mistral AI & All Hands AI | 24B | 380000 | N.C. | |||||
| granite4-small-h:32b | IBM | 32B (9B active) | 128000 | ||||||
| granite4-tiny-h:7b | IBM | 7B (1B active) | 128000 | ||||||
| deepseek-ocr | DeepSeek AI | 3B | 8192 | ||||||
| medgemma:27b | 27B | 128000 | |||||||
| mistral-small3.2:24b | Mistral AI | 24B | 128000 | ||||||
| granite3.2-vision:2b | IBM | 2B | 16384 | ||||||
| magistral:24b | Mistral AI | 24B | 40000 | ||||||
| cogito:32b | Deep Cogito | 32B | 32000 | ||||||
| granite-embedding:278m | IBM | 278M | 512 | N.C. | |||||
| qwen3-embedding:0.6b | Qwen Team | 0.6B | 8192 | N.C. | |||||
| qwen3-embedding:4b | Qwen Team | 4B | 8192 | N.C. | |||||
| qwen3-embedding:8b | Qwen Team | 8B | 8192 | N.C. | |||||
| granite3-guardian:2b | IBM | 2B | 8192 | N.C. | |||||
| granite3-guardian:8b | IBM | 8B | 32000 | N.C. | |||||
| functiongemma:270m | 270M | 32768 | N.C. | ||||||
| ministral-3:3b | Mistral AI | 3B | 250000 | N.C. | |||||
| ministral-3:8b | Mistral AI | 8B | 250000 | N.C. | |||||
| ministral-3:14b | Mistral AI | 14B | 250000 | N.C. | |||||
Recommended use cases
Here are some common use cases and the most suitable models for each. These recommendations are based on the specific performance and capabilities of each model.
Multilingual dialogue
- Llama 3.3
- Mistral Small 3.2
- Qwen 3
- Openai OSS
- Granite 4
Analysis of long documents
- Gemma 3
- Qwen next
- Qwen 3
- Granite 4
Programming and development
- DeepCoder
- Qwen3 coding
- Granite 4
- Devstral
Visual analysis
- deepseek-OCR
- Mistral Small 3.2
- Gemma 3
- Qwen 3 VL
Safety and compliance
- Granite Guardian
- Granite 4
- Devstral
- Mistral Small 3.2
- Magistral small
Light and on-board deployments
- Gemma 3n
- Granite 4 tiny
- Qwen 3 VL (2B)