Our offer Large Language Model as a Service (LLMaaS) gives you access to state-of-the-art language models, inferred using a qualified infrastructure SecNumCloudcertified HDS for hosting health data, and therefore sovereign, calculated in France. Benefit from high performance and optimum security for your AI applications. Your data remains strictly confidential and is not used or stored after processing.
Large models
Our large models offer state-of-the-art performance for the most demanding tasks. They are particularly well-suited to applications requiring a deep understanding of language, complex reasoning or the processing of long documents.
Llama 3.3 70B
Qwen3 235B
DeepSeek-R1 671B
Gemma 3 27B
Qwen3 30B-A3B FP8
DeepSeek-R1 70B
Qwen2.5-VL 32B
Qwen2.5-VL 72B
Specialised models
Our specialised models are optimised for specific tasks such as code generation, image analysis or structured data processing. They offer an excellent performance/cost ratio for targeted use cases.
Qwen3 14B
Gemma 3 12B
Gemma 3 4B
Gemma 3 1B
Lucie-7B-Instruct
Mistral Small 3.1
Mistral Small 3.2
Mistral Small 3.2
DeepCoder
Granite 3.2 Vision
Granite 3.3 8B
Granite 3.3 2B
Magistral 24B
Granite 3.1 MoE
cogito:14b
Cogito 32B
Qwen3 32B
QwQ-32B
DeepSeek-R1 14B
DeepSeek-R1 32B
Cogito 3B
Granite Embedding
Granite 3 Guardian 2B
Granite 3 Guardian 8B
Qwen 2.5 0.5B
Qwen 2.5 1.5B
Qwen 2.5 14B
Qwen 2.5 32B
Qwen 2.5 3B
Qwen3 0.6b
Qwen3 1.7b
Qwen3 4b
Qwen3 8b
Qwen2.5-VL 3B
Qwen2.5-VL 7B
Foundation-Sec-8B
devstral 24B
Cogito 8B
Llama 3.1 8B
Phi-4 Reasoning 14B
Model comparison
This comparison table will help you choose the model best suited to your needs, based on various criteria such as context size, performance and specific use cases.
Model | Publisher | Parameters | Context (k tokens) | Vision | Agent | Reasoning | Security | Quick * | Energy efficiency * |
---|---|---|---|---|---|---|---|---|---|
Large models | |||||||||
Llama 3.3 70B | Meta | 70B | 60000 | ||||||
Qwen3 235B | Qwen Team | 235B | 60000 | ||||||
DeepSeek-R1 671B | DeepSeek AI | 671B | 16000 | ||||||
Gemma 3 27B | 27B | 120000 | |||||||
Qwen3 30B-A3B FP8 | Qwen Team | 30B-A3B | 32000 | ||||||
DeepSeek-R1 70B | DeepSeek AI | 70B | 32000 | ||||||
Qwen2.5-VL 32B | Qwen Team | 32B | 120000 | ||||||
Qwen2.5-VL 72B | Qwen Team | 72B | 128000 | ||||||
Specialised models | |||||||||
Qwen3 14B | Qwen Team | 14B | 32000 | ||||||
Gemma 3 12B | 12B | 120000 | |||||||
Gemma 3 4B | 4B | 120000 | |||||||
Gemma 3 1B | 1B | 32000 | |||||||
Lucie-7B-Instruct | OpenLLM-France | 7B | 32000 | ||||||
Mistral Small 3.1 | Mistral AI | 24B | 120000 | ||||||
Mistral Small 3.2 | Mistral AI | 24B | 120000 | ||||||
Mistral Small 3.2 | Mistral AI | 24B | 120000 | ||||||
DeepCoder | Agentica x Together AI | 14B | 32000 | ||||||
Granite 3.2 Vision | IBM | 2B | 16384 | ||||||
Granite 3.3 8B | IBM | 8B | 60000 | ||||||
Granite 3.3 2B | IBM | 2B | 120000 | ||||||
Magistral 24B | Mistral AI | 24B | 40000 | ||||||
Granite 3.1 MoE | IBM | 3B | 32000 | ||||||
cogito:14b | Deep Cogito | 14B | 32000 | ||||||
Cogito 32B | Deep Cogito | 32B | 32000 | ||||||
Qwen3 32B | Qwen Team | 32B | 40000 | ||||||
QwQ-32B | Qwen Team | 32B | 32000 | ||||||
DeepSeek-R1 14B | DeepSeek AI | 14B | 32000 | ||||||
DeepSeek-R1 32B | DeepSeek AI | 32B | 32000 | ||||||
Cogito 3B | Deep Cogito | 3B | 32000 | ||||||
Granite Embedding | IBM | 278M | 512 | N.C. | |||||
Granite 3 Guardian 2B | IBM | 2B | 8192 | N.C. | |||||
Granite 3 Guardian 8B | IBM | 8B | 32000 | N.C. | |||||
Qwen 2.5 0.5B | Qwen Team | 0.5B | 32000 | ||||||
Qwen 2.5 1.5B | Qwen Team | 1.5B | 32000 | ||||||
Qwen 2.5 14B | Qwen Team | 14B | 32000 | ||||||
Qwen 2.5 32B | Qwen Team | 32B | 32000 | ||||||
Qwen 2.5 3B | Qwen Team | 3B | 32000 | ||||||
Qwen3 0.6b | Qwen Team | 0.6B | 32000 | ||||||
Qwen3 1.7b | Qwen Team | 1.7B | 32000 | ||||||
Qwen3 4b | Qwen Team | 4B | 32000 | ||||||
Qwen3 8b | Qwen Team | 8B | 32000 | ||||||
Qwen2.5-VL 3B | Qwen Team | 3.8B | 128000 | ||||||
Qwen2.5-VL 7B | Qwen Team | 7B (8.3B) | 128000 | ||||||
Foundation-Sec-8B | Foundation AI - Cisco | 8B | 16384 | ||||||
devstral 24B | Mistral AI & All Hands AI | 24B | 120000 | ||||||
Cogito 8B | Deep Cogito | 8B | 32000 | ||||||
Llama 3.1 8B | Meta | 8B | 32000 | ||||||
Phi-4 Reasoning 14B | Microsoft | 14B | 32000 |
Recommended use cases
Here are some common use cases and the most suitable models for each. These recommendations are based on the specific performance and capabilities of each model.
Multilingual dialogue
- Llama 3.3
- Mistral Small 3.1
- Qwen 2.5
- Granite 3.3
Analysis of long documents
- Gemma 3
- DeepSeek-R1
- Granite 3.3
Programming and development
- DeepCoder
- QwQ
- DeepSeek-R1
- Granite 3.3
- Devstral
Visual analysis
- Granite 3.2 Vision
- Mistral Small 3.1
- Gemma 3
- Qwen2.5-VL
Safety and compliance
- Granite Guardian
- Granite 3.3
- Devstral
- Mistral Small 3.1
- Magistral 24b
- Foundation-Sec-8B
Light and on-board deployments
- Gemma 3
- Granite 3.1 MoE
- Granite Guardian
- Granite 3.3