Our Large Language Model as a Service (LLMaaS) offering gives you access to cutting-edge language models, inferred using SecNumCloud-qualified infrastructure, HDS-certified for healthcare data hosting, and therefore sovereign, calculated in France. Benefit from high performance and optimal security for your AI applications. Your data remains strictly confidential, and is neither exploited nor stored after processing.
Large models
Our large models offer state-of-the-art performance for the most demanding tasks. They are particularly well-suited to applications requiring a deep understanding of language, complex reasoning or the processing of long documents.
gpt-oss:120b
llama3.3:70b
qwen3:235b
deepseek-r1:671b
gemma3:27b
qwen3-coder:30b
qwen3-2507-think:30b-a3b
qwen3-2507:30b-a3b
qwen3:30b-a3b
deepseek-r1:70b
qwen2.5vl:32b
qwen2.5vl:72b
Specialised models
Our specialised models are optimised for specific tasks such as code generation, image analysis or structured data processing. They offer an excellent performance/cost ratio for targeted use cases.
embeddinggemma:300m
gpt-oss:20b
qwen3:14b
gemma3:12b
gemma3:4b
gemma3:1b
lucie-instruct:7b
mistral-small3.1:24b
mistral-small3.2:24b
deepcoder:14b
granite3.2-vision:2b
granite3.3:8b
granite3.3:2b
magistral:24b
granite3.1-moe:3b
cogito:14b
cogito:32b
qwen3:32b
qwq:32b
deepseek-r1:14b
deepseek-r1:32b
cogito:3b
granite-embedding:278m
granite3-guardian:2b
granite3-guardian:8b
qwen2.5:0.5b
qwen2.5:1.5b
qwen2.5:14b
qwen2.5:32b
qwen2.5:3b
qwen3:0.6b
qwen3:1.7b
qwen3:4b
qwen3-2507-think:4b
qwen3-2507:4b
qwen3:8b
qwen2.5vl:3b
qwen2.5vl:7b
hf.co/roadus/Foundation-Sec-8B-Q4_K_M-GGUF:Q4_K_M
devstral:24b
cogito:8b
llama3.1:8b
phi4-reasoning:14b
Model comparison
This comparison table will help you choose the model best suited to your needs, based on various criteria such as context size, performance and specific use cases.
Model | Publisher | Parameters | Context (k tokens) | Vision | Agent | Reasoning | Security | Quick * | Energy efficiency * |
---|---|---|---|---|---|---|---|---|---|
Large models | |||||||||
gpt-oss:120b | OpenAI | 120B | 120000 | ||||||
llama3.3:70b | Meta | 70B | 120000 | ||||||
qwen3:235b | Qwen Team | 235B | 60000 | ||||||
deepseek-r1:671b | DeepSeek AI | 671B | 16000 | ||||||
gemma3:27b | 27B | 120000 | |||||||
qwen3-coder:30b | Qwen Team | 30B | 250000 | ||||||
qwen3-2507-think:30b-a3b | Qwen Team | 30B | 120000 | ||||||
qwen3-2507:30b-a3b | Qwen Team | 30B | 250000 | ||||||
qwen3:30b-a3b | Qwen Team | 30B | 32000 | ||||||
deepseek-r1:70b | DeepSeek AI | 70B | 32000 | ||||||
qwen2.5vl:32b | Qwen Team | 32B | 120000 | ||||||
qwen2.5vl:72b | Qwen Team | 72B | 128000 | ||||||
Specialised models | |||||||||
embeddinggemma:300m | 300M | 2048 | N.C. | ||||||
gpt-oss:20b | OpenAI | 20B | 120000 | ||||||
qwen3:14b | Qwen Team | 14B | 32000 | ||||||
gemma3:12b | 12B | 120000 | |||||||
gemma3:4b | 4B | 120000 | |||||||
gemma3:1b | 1B | 32000 | |||||||
lucie-instruct:7b | OpenLLM-France | 7B | 32000 | ||||||
mistral-small3.1:24b | Mistral AI | 24B | 120000 | ||||||
mistral-small3.2:24b | Mistral AI | 24B | 120000 | ||||||
deepcoder:14b | Agentica x Together AI | 14B | 32000 | ||||||
granite3.2-vision:2b | IBM | 2B | 16384 | ||||||
granite3.3:8b | IBM | 8B | 60000 | ||||||
granite3.3:2b | IBM | 2B | 120000 | ||||||
magistral:24b | Mistral AI | 24B | 40000 | ||||||
granite3.1-moe:3b | IBM | 3B | 32000 | ||||||
cogito:14b | Deep Cogito | 14B | 32000 | ||||||
cogito:32b | Deep Cogito | 32B | 32000 | ||||||
qwen3:32b | Qwen Team | 32B | 40000 | ||||||
qwq:32b | Qwen Team | 32B | 32000 | ||||||
deepseek-r1:14b | DeepSeek AI | 14B | 32000 | ||||||
deepseek-r1:32b | DeepSeek AI | 32B | 32000 | ||||||
cogito:3b | Deep Cogito | 3B | 32000 | ||||||
granite-embedding:278m | IBM | 278M | 512 | N.C. | |||||
granite3-guardian:2b | IBM | 2B | 8192 | N.C. | |||||
granite3-guardian:8b | IBM | 8B | 32000 | N.C. | |||||
qwen2.5:0.5b | Qwen Team | 0.5B | 32000 | ||||||
qwen2.5:1.5b | Qwen Team | 1.5B | 32000 | ||||||
qwen2.5:14b | Qwen Team | 14B | 32000 | ||||||
qwen2.5:32b | Qwen Team | 32B | 32000 | ||||||
qwen2.5:3b | Qwen Team | 3B | 32000 | ||||||
qwen3:0.6b | Qwen Team | 0.6B | 32000 | ||||||
qwen3:1.7b | Qwen Team | 1.7B | 32000 | ||||||
qwen3:4b | Qwen Team | 4B | 32000 | ||||||
qwen3-2507-think:4b | Qwen Team | 4B | 250000 | ||||||
qwen3-2507:4b | Qwen Team | 4B | 250000 | ||||||
qwen3:8b | Qwen Team | 8B | 32000 | ||||||
qwen2.5vl:3b | Qwen Team | 3.8B | 128000 | ||||||
qwen2.5vl:7b | Qwen Team | 7B (8.3B) | 128000 | ||||||
hf.co/roadus/Foundation-Sec-8B-Q4_K_M-GGUF:Q4_K_M | Foundation AI - Cisco | 8B | 16384 | ||||||
devstral:24b | Mistral AI & All Hands AI | 24B | 120000 | ||||||
cogito:8b | Deep Cogito | 8B | 32000 | ||||||
llama3.1:8b | Meta | 8B | 32000 | ||||||
phi4-reasoning:14b | Microsoft | 14B | 32000 |
Recommended use cases
Here are some common use cases and the most suitable models for each. These recommendations are based on the specific performance and capabilities of each model.
Multilingual dialogue
- Llama 3.3
- Mistral Small 3.2
- Qwen 3
- Granite 3.3
Analysis of long documents
- Gemma 3
- Qwen3
- Granite 3.3
Programming and development
- DeepCoder
- QwQ
- Qwen3 coding
- Granite 3.3
- Devstral
Visual analysis
- Granite 3.2 Vision
- Mistral Small 3.2
- Gemma 3
- Qwen2.5-VL
Safety and compliance
- Granite Guardian
- Granite 3.3
- Devstral
- Mistral Small 3.1
- Magistral 24b
- Foundation-Sec-8B
Light and on-board deployments
- Gemma 3
- Granite 3.1 MoE
- Granite Guardian
- Granite 3.3